

WATERWAY TRANSPORTATION OF TIMBER IN NWANIBA BEACH, URUAN LOCAL GOVERNMENT AREA, AKWA IBOM STATE

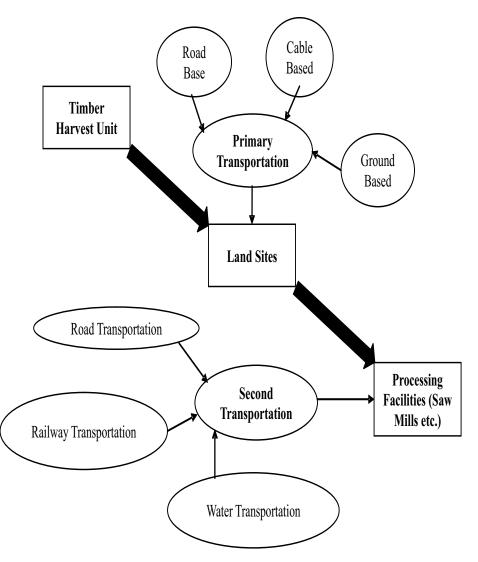
Okon, K. E., Udofia, S., Nwanjah, M. O., Daniel, K. S.

Department of Forestry and Wildlife, Faculty of Agriculture, University of Uyo, Uyo, Nigeria CorrespondingEmail: kufreokon@uniuyo.edu.ng

Abstract

The importance of water transportation cannot be overemphasized. The flow of forest products from harvesting sites to the processing facilities or market is a combined effort of different stakeholders. The objective of this study was to access waterway transportation of timber in Nwaniba beach, Uruan Local Government Area of Akwa Ibom State. Structured questionnaires were randomly distributed to timber merchants to collect the data used in this study and the data were analysed using descriptive statistics (frequency and percentage) and factor analysis. The results obtained from the study showed that timber trade was dominated by male between the ages 34 - 41 (51.1%) who had attained some level of formal education. The work experience of the merchants ranged between 12-19 years (48.9%) and it is the only business they operate to sustain their livelihood. Termineliasuperba(81.3%) and Naucleadiderrichii (68.8%) were the predominant species imported and the major source of the timber was Cameroun. Wood rafting (45.8%) and loading unto canoes (37.5%) are the two water transportation methodsbeen used by timber merchants. Piracy (89.4%) and wavedisturbance (77.1%) are the major challenges encountered in waterway transportation of timber.

Keywords: Waterways transportation, Timber, wood harvesting, rafting, and wave disturbance


Introduction

Forests are major sources of renewable products, annually contributing some 3.5 billion cubic meters of wood to the world economy and thus making the forest industry a potentially important part of the economy of the future (Swedish Forest Agency, 2014). The flow of forest products from harvesting sites to the processing facilities or market is a combined effort of different stakeholders. The supply chain of the forest products generally starts with foresters laying out harvest plans for forest landowners i.e., small woodlot owners, industrial land owners and public lands.

Logging operators with the direction of foresters and logging contractors take responsibilities of delivering logs from the harvesting sites and piling the logs at the log landings. As shown in Figure 1, with guidance of a procurement manager and trucking contractor, the forest products are transported from landings to processing facilities (Koirala*et al.* 2017). Transportation is important because of its essential function of moving products from one place to another. It is also one of the expensive phases and can be crucial in fixing prices of delivered forest products (Pan *et al.*, 2008; Han *et al.*, 2015; Kizha*et al.*, 2015; Koira*et al.*, 2016).

Despite the prevalence of road transportation, waterways transportation is the most common method to deliver wood products particular from the felling sites. Its popularity can be associated with the closeness of the felling sites to water bodies, under- developed road networks, limited access to railway lines and embargos in timber exploitation in some states in Nigeria, so waterway transports system becomes the only option.

Waterway Transportation of Timber.....Okon et al.

Figure 1: The flow of forest products from harvesting sites to the processing facilities

The different methods of timber transportation by water includes: timber rafting, log driving, barge transport and ferry. In timber rafting, logs are transported when tied together into rafts and drifted or pulled across water-body or down a river. It is the second cheapest method of timber transportation after log driving (Casson, 1995). Log driving is a means of moving (sawn tree trunks) from a forest to saw and pulp mills downstream using the river current. The transportation of timbers in Nwaniba beach, Uruan Local Government Area in Akwa Ibom State, Nigeria has predominantly been performed by floating and loading using canoes. On the arrival of the timbers at the sea port, they are transported by roads to the processing mills and the markets using trucks. The logs or sawn timbers vary in quantities, gualities, sizes and species types and are transported according to its demand and utility. According Koirala*et al.*, (2017) even with the inherent need to transport forest products, there are various challenges in this sector that needs to be addressed for its efficient operations. These challenges can be specific to the region and thereby require a local level understanding of constraints and potential mitigation strategies including policy formulation.

Concerns regarding higher costs associated with forest products transportation have led to several studies in forest operations including analysis of wood products transportation costs (Grebner*et al.*, 2005; Yoshoka*et al.*, 2006;Möller and Nielsen 2007;;Acuna *et al.*, 2012), increasing efficiency in transportation (Sikanen*et al.*, 2005; Greene *et al.*, 2007; Holzleitner*et al.*, 2011; Montgomery *et al.*, 2016) and survey analysis of logging and transportation sectors (Egan and Taggart 2004; Egan and Taggart 2009; Leon and Benjamin 2012; Abbas *et al.*, 2014; Malinen*et al.*, 2014). Similarly, there are research studies utilizing qualitative methods, such as semi-structured interviews to extract information on timber harvesting and transportation (Fielding*et al.* 2012;

Silver*et al.* 2015). To this end qualitative research approach was used to get in-depth information on waterway timber transportation in Nwaniba beach, Uruan LGA of Akwa Ibom State.

Materials and Method

StudyArea

This study was carried out in Nwaniba Beach, Uruan LGA., Akwa Ibom State, Nigeria. It is located between latitudes 5° 02 0° North and longitudes 8° 03 0° East in the South of Nigeria (Wikipedia, 2016). It has an estimated population of 164,000 (National Population Census, 2006) with about 40 villages and 7 clans. It is bounded in the east by Odukpani LGA. in Cross River State, but in south by Okobo LGA, while in the west by NsitAttai and Ibesikpo Asutan LGA and north by Itu LGA. The climate of the State is characterized by two seasons; the wet season which is between March to November of every year and the dry season between December to March. The total annual average rainfall is about 2500mm and temperatures are uniformly high throughout the year with slight variation between 26°C and 28°C (Udofia, 2011). The high relative humidity is between 75% and 95%, though common across the length and breadth of the state (Peters *et al.*, 1989).

Data Collection

Data for this study were collected using structured questionnaire supplemented with oral interview and direct observation and these was used in obtaining information for this study. The target population for this study was timber merchants in Nwaniba Beach. The structured questionnaires were randomlyadministered to the timber merchants at Nwaniba Beach.

Data Analysis

The questionnaire was pretested before final administration to respondents. Descriptive statistics such as tables and percentages and factor analysis were used to analyse the data obtained.

Results and Discussion

Demographic Characteristics of the Respondents

Table 1 shows the distribution of respondents based on their demographic characteristics. All the 47 respondents were male and no female was involved in timber merchandise (Table 1). This is because the business is tedious in nature and requires physical strength, therefore women find it extremely strenuous to get involved in the business. Timber merchants between age 34-41(51.1%) were highly involved in the business, followed by those between the age 27-33 (31.9%) (Table 1, S/N 2). The high involvement of respondents within this age group may be as a result of their youthful strength and ability to withstand the tedious nature of the job. Merchants between this age brackets are at their prime age and are full of energy.

Majority of the timber merchants (57.4%) were married and 38.3% were single out of the administered questionnaires. Most of the married timber merchants asserted that they started timber business before they got married.

Most of the respondents (Table 1) had primary school education (48.9%) and 48.9% of the respondents obtained Senior School Certificate (SSC).

The proportion of the respondents that had worked as timber merchants for 12-19 years is 48.9%, while 27.7% stated that they had worked for 4-11 years. The majority of the respondents have no other occupation apart from timber business. This is because of the high rate of returns from timber merchandise that is sufficient to take care of their financial responsibilities.

Waterway Transportation of Timber.....Okon et al.

Variables	Demographic	Frequency	Percentage	
Caralan	Characteristics	(n=47)		
Gender				
	Male	47	100	
	Female	0	0	
	Total		100	
Age				
	27-33	15	31.9	
	34-41	24	51.1	
	42-48	8	17	
	Total	47	100	
Marital status				
	Single	18	38.3	
	Married	27	57.4	
	Widow/Widower	2	4.3	
	Total	47	100	
Educational				
qualification				
	FLSC	23	48.9	
	SSCE	23	48.9	
	OND	1	2.1	
	Total	47	100	
Years of work				
experience				
	· · · ·	13	27.7	
	12 - 19	23	48.9	
	20-27	11	23.4	
	Total	47	100	
Other occupations				
	None	33	70.2	
	Driver	1	2.1	
	Driver/Electrician	3	6.4	
	Farming	1	2.1	
	Trading/Business	4	8.5	
	Fisherman	2	4.3	
	Plumber	1	2.1	
	Electrician	2	4.3	
	Total	47	100	

Table 1: Distribution of Respondents Based on Demographic Characteristics

Common Wood Species Transported

Table 2 shows the common wood species that transported by the timber merchants from Nwaniba Beach. The most transported wood species are; *Terminalia superba*(81.3%) (Table 2), followed by *Naucleadiderrichii* (68.8%) and *Diospyros ebenum*, *Triplochitonsleroxylon*, *Tectonagrandisand Miliciaexcelsa*(64.6%) respectively. This is as a result of the prevalence of these species in the regions where they are sourced from and their demand and utilization by consumers is high. The least transported wood species were *Plantanusacerifolia*, *Maesobortyadusenii*, *Symphonia globulifera*, *Xylomelum*, *marcarangabatelii*, *Staudtiastipitata*, *Carapaprocera*, *Triplochitonscloroxylon*, *Stercullatragacantha*, *Cresentiacujete*, *Uapacaguinensis*, *Klaninedoxagabonensis*(2.1%).

S/N	Wood species	Common names	Local names	No	Yes	% Total
1	Brachystegiaeurycoma	Achi	Akpa	47.9	52.1	100
2	Terminelasuperba	Afara	Afiaeto	18.8	81.3	100
3	Xylopiaethiopica	African grains of selim	Atek	58.3	41.7	100
4	Mitragynastipulosa	Abura	Uwen	43.8	56.3	100
5	Plukenetiaconophora	African walnut	Ukpa	60.4	39.6	100
6	Cerdusatlantica	Cedar	Cedar	37.5	62.5	100
7	Triplochotonsleroxylon	Obeche	Obeche	35.4	64.6	100
8	Naucleadiderrichii	Opepe	Ikon Inyang	31.3	68.8	100
9	Diospyrossebenum	Ebony	Obubiteto	35.4	64.6	100
10	Gmelina arborea	Gmelina	Etoudatikang	43.8	56.3	100
11	Tectonagrandis	Teak	Tiik	35.4	64.6	100
12	Milicia excels	Iroko	Ofriyo	35.4	64.6	100
13	Priorabasalmifera	Agba	-	75.0	25.0	100
14	Oxystigmamannii	Tchitola	Ntufiak	62.5	37.5	100
15	Baphianitida	Camwood	Ofuo	58.3	41.7	100
16	Heveabrasilensis	Rubber	Okpo	83.3	16.7	100
17	Cordia millenii	Drum tree	-	87.5	12.5	100
18	Diospyros mespiloformis	African Ebony	Obubiteto	91.7	8.3	100
19	Albezialebbeck	Flea tree	Etek	95.8	4.2	100
20	Ceidapentadra	Silk cotton tree	Ukim	91.7	8.3	100
21	Khaya senegalensis	African Mahogany	Achimkprok	75.0	25.0	100
22	Plantanusacerifolia	London Plate	Ndon	97.9	2.1	100
23	Kigeliaafricanna	Sausage tree	Atahaban	89.6	10.4	100
24	Phthonatusangolensis	African nutmeg	Abakani	95.8	4.2	100
25	Maesobortyadusenii	-	Ekpontimenyen	97.9	2.1	100
26	Symphonia globulifera	Chestick	Efianduan	97.9	2.1	100
27	Macaranga barteri	Macaranga	Akpab	97.9	2.1	100
28	Staudtiastipitata	Bokopi	Iyibokoyo	97.9	2.1	100
29	Carapaprocera	Andiroba	Asakabraenton	97.9	2.1	100
30	Afzeliaafricanna	Mahogany	Achimontoto	93.8	6.3	100
31	Stercullatragacantha	Streculia	Udot	97.9	2.1	100
32	Cresentiacujete	Calabash tree	Ibu	97.9	2.1	100
33	Uapacaguinensis	Sugar plum	Mkpenek	97.9	2.1	100
34	Irvengiagabonensis	Wild Mango	Uyo	97.9	2.1	100
35	Pseudotsugamenziesii	Douglass fir	-	93.8	6.3	100
36	Pinus spp	Pine	Etoofim	72.9	27.1	100
37	Juniperus virginiana	Cypress	-	91.7	8.3	100

Table 2: Common Wood Species Transported from Nwaniba Beach.

Timber Rafting and Canoeing Methods

The two water transportation methodsused by the timber merchants were rafting and canoeing methods. About 45.8% of the respondents preferred to use rafts in transporting timbers to the landing and 37.5% of the respondents used canoes while 16.7% of the respondent used both rafts and canoes to transport timbers to landing (Table 3). Timber merchants preferred raft method because many logscan be conveyed at the same time and it is cheaper compared to road transport which access may be disrupted in event of natural disaster like excessive rainfall and flood. The disadvantage of waterway transportation of timber is the slow speed, it takes a longer time to arrive at the intended destination

Table 3: Type of Water Transportation

S/N	Туре	Frequency	Percent
1	Rafting	22	45.8
2	Canoe (boat)	18	37.5
3	Canoeing/rafting	8	16.7
	Total	48	100.0

Challenges Encountered in Waterway Transportation of Timber

Table 4 highlights the challenges encountered during water way transportation of timber by the merchants. The major challenge is incident of attacks by pirates (89.4%)(Table 8), followed by wave current disturbance and galloping (77.1%) and others.

S/N	N Challenge encounter	No	Yes	Total (%)	Relative order of position and incidence index
1	Not all woods can float	52.1	47.9	100	0.047
2	Criminality on waterways(piracy)	10.4	89.4	100	0.894
3	Waves disturbance/galloping	22.9	77.1	100	0.771
4	It takes longer time to deliver	62.5	37.5	100	0.375
5	Sawn woods get very wet on delivery	60.4	39.6	100	0.396
6	Transportation by waterways is tedious	97.9	2.1	100	0.210
7	Disturbance by Cameroonian security force	97.9	2.1	100	0.210
8	Manual boat usually develops fault	87.5	12.5	100	0.120
9	Illegal charges by security agencies	97.9	2.1	100	0.021
10	Accident	97.9	2.1	100	0.021
11	Water police	97.9	2.1	100	0.021
12	Floating of wood is risky	68.8	31.3	100	0.313
13	Navigational difficulties due to sand	81.3	18.8	100	0.188
14	High revenue payment	97.9	2.1	100	0.021
15	Restricted to forest close to water bodies	93.8	6.3	100	0.063
16	Wood decays due to long stay	93.8	6.3	100	0.063
17	poor mobile communication signals or services	97.9	2.1	100	0.021

Table 4: Challenges Encountered in Water ways Transportation of Timber

Conclusion

Waterways transportation of timber has over the years proven to be a veritable means of timber/logs haulage. From the results obtained in this study, only maleswereinvolved in timber merchandise and they are in their youthful ages. The majority are married and therefore are breadwinners. Most of them rely solely on timber trade as their source of income. The common wood species transported from the beach are the tropical hardwood species. Wood raftingand loading unto canoes were the two water transportation methods used by the timber merchants. Incident of attacks by pirates was the major challenge transportation of timber by water.

References

Abbas, D., Handler, R., Hartsough, B., Dykstra, D., Lautala, P., Hembroff, L. (2014). A survey analysis of forest harvesting and transportation operations in Michigan. *Croatian Journal of Forest Engineering: Journal for Theory and Application of Forestry Engineering*, 35(2):179-192.

Acuna, M., Mirowski, L., Ghaffariyan, M. R., Brown, M. (2012). Optimizing transport efficiency and costs in

Australian wood chipping operations. *Biomass and bioenergy*, 46:291-300.

Casson, L. (1995). Ships and seamanship in the ancient world 'John Hopkins University Press.

- Egan, A., Taggart, D. (2004). Who will log in Maine's north woods? A cross-cultural study of occupational choice and prestige. *Northern Journal of Applied Forestry*, *21*(4): 200-208.
- Egan, A., Taggart, D. (2009). Public perceptions of the logging profession in Maine and implications for logger recruitment. *Northern Journal of Applied Forestry*, *26*(3): 93-98.
- Fielding, D., Cubbage, F., Peterson, M. N., Hazel, D., Gugelmann, B., Moorman, C. (2012). Opinions of forest managers, loggers, and forest landowners in North Carolina regarding biomass harvesting guidelines. *International Journal of Forestry Research*, 2012.
- Grebner, D. L., Grace, L. A., Stuart, W., Gilliland, D. P. (2005). A practical framework for evaluating hauling costs. *International Journal of Forest Engineering*, *16*(2): 115-128
- Greene W.D., Baker S.A., Lowrimore T. (2007). Analysis of Log Hauling Vehicle Accidents in the State of Georgia, USA, 1988–2004. *Int. J. For: Eng.* 18: 52–57.
- Han, H., Montgomery, T., Hohl, A. (2015). Biomass power plant feedstock procurement: Modeling transportation cost zones and the potential for competition. *California Agriculture*, 69(3): 184-190.
- Holzleitner F., Kanzian C., Stampfer K. (2011). Analyzing time and fuel consumption in road transport of round wood with an onboard fleet manager. Eur. J. For. Res. 130:293–301.
- Kizha A.R., Han H.S., Montgomery T., Hohl A. (2015). Biomass power plant feedstock procurement: Modeling transportation cost zones and the potential for competition. *Calif. Agric.* 69:184–190.
- Koirala, A., Kizha, A. R., Urioste-Stone, D., Sandra, M. (2017). Policy recommendation from stakeholders to improve forest products transportation: A qualitative study. *Forests*, 8(11):434.
- Koirala, A., Kizha, A. R., Roth, B. (2016). Forest trucking industry in Maine: A review on challenges and resolutions.
- Leon, B. H., Benjamin, J. G. (2012). A survey of business attributes, harvest capacity and equipment infrastructure of logging businesses in the northern forest. *School of Forest Resources, University of Maine, Orono*
- Malinen, J., Nousiainen, V., Palojarvi, K., Palander, T. (2014). Prospects and challenges of timber trucking in a changing operational environment in Finland. *Croatian Journal of Forest Engineering: Journal for Theory and Application of Forestry Engineering*, 35(1): 91-100.
- Möller, B., Nielsen, P. S. (2007). Analysing transport costs of Danish forest wood chip resources by means of continuous cost surfaces. *Biomass and bioenergy*, *31*(5): 291-298.
- Montgomery T.D., Han H.S., Kizha A.R. (2016). Modelling work plan logistics for centralized biomass recovery operations in mountainous terrain. Biomass Bioenergy 85: 262–270.
- National Population Commission (2006). National Population Commission (2006).
- Pan, F., Han, H. S., Johnson, L. R., & Elliot, W. J. (2008). Production and cost of harvesting, processing, and transporting small-diameter (<5 inches) trees for energy. *Forest Products Journal*. 58 (5): 47-53.
- Petters S.; Usoro E.; Udo E.; Obot U. W.; Okpon S. N. Physical background, soils and landuse and ecological problems. In: Technical Report of the Task Force on Soils and Landuse Survey, Akwa Ibom State. Govt. Print Office, Uyo. 1989. Available online: www.sciepub.com > reference.
- Sikanen, L., Asikainen, A., Lehikoinen, M. (2005). Transport control of forest fuels by fleet manager, mobile terminals and GPS. *Biomass and Bioenergy*, 28(2): 183-191.
- Silver E.J., Leahy J.E., Noblet C.L., Weiskittel A.R. (2015). Maine woodland owner perceptions of long rotation woody biomass harvesting and bioenergy. Biomass Bioenergy 76: 69–78.
- Swedish Forest Agency. (2014). Swedish statistical yearbook of forestry.
- Udofia, S. I. (2011). Constraints to production and sources of nutrients in homegardens of Akwa Ibom State, Nigeria. *Nigerian Journal of Agriculture, Food and Environment*, 7(1): 28-33.
- Yoshioka T., Aruga K., Nitami T., Sakai H., Kobayashi H. (2006). A case study on the costs and the fuel consumption of harvesting, transporting, and chipping chains for logging residues in Japan. Biomass Bioenergy 30:342–348.